
Exam Calculus 2

4 April 2014, 14:00-17:00

The exam consists of 6 problems. You have 180 minutes to answer the ques-
tions. You can achieve 100 points which includes a bonus of 10 points.

1. [8+4+3 Points] Consider the function

f(x, y) =

{
x2y
x2+y2

if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

(a) Use the definition of partial derivatives to find fx(0, 0) and fy(0, 0).

(b) Let a be a nonzero constant. By the substitutions x(t) = t and y(t) = at, the
function f(x, y) becomes a function of t. Show that this function is differentiable,
and find its derivative at t = 0.

(c) Compute fx(0, 0)x′(0) + fy(0, 0) y′(0). Use this result and the result in part (b)
to comment on the applicability of the chain rule.

2. [10+5 Points] Let C be the curve parametrized by r : [0, 2π]→ R3,

r(t) = et cos t i + et sin t j + et k.

(a) Find the parametrization of C by arc length.

(b) For each point on C, compute the curvature of C at this point.

3. [7+8 Points] Consider the ellipsoid

3x2 + 2y2 + z2 = 6.

(a) Compute the tangent plane of the ellipsoid at the point (x, y, z) = (1, 1, 1).

(b) Use the Method of Lagrange Multipliers to find the radius of the largest sphere
centered at the origin that can fit inside of the ellipsoid.

4. [11+4 Points] Consider the vector field

F = x2 i + cos y sin z j + sin y cos z k.

(a) Show that F is conservative and find a potential function f for F.

(b) Evaluate
∫
C
F · dr where C is the curve parametrized by r : [0, 1] → R3, r(t) =

(t2 + 1)i + etk + e2tk where C is oriented by the tangent vector associated with
the parametrization.

5. [20 Points] Verify Stokes’ Theorem for the flux of the vector field F = −2yz i +
y j+ 3xk upward through the part of the paraboloid z = 5− x2− y2 that has z ≥ 1.

6. [10 Points] Let D be a solid region in R3 with boundary ∂D. Prove that for
r = x i + y j + z k and r = |r|,∫∫∫

D

1

r2
dV =

∫∫
∂D

1

r2
r · dS.



Solutions

1. (a) By definition

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h− 0
= lim

h→0

h20
h2+02

− 0

h
= lim

h→0

0− 0

h
= lim

h→0
0 = 0,

and similarly

fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h− 0
= lim

h→0

02h
02+h2

− 0

h
= lim

h→0

0− 0

h
= lim

h→0
0 = 0.

(b) Let t ∈ R and g(t) = f(x(t), y(t)). Then

g(t) =

{
(x(t))2y(t)

(x(t))2+(y(t))2
if (x(t), y(t)) 6= (0, 0)

0 if (x(t), y(t)) = (0, 0)
=

{
t2(at)
t2+(at)2

if (t, at) 6= (0, 0)

0 if (t, at) = (0, 0)

=

{
t2(at)
t2+(at)2

if t 6= 0

0 if t = 0
=

{
a

1+a2
t if t 6= 0

0 if t = 0
=

a

1 + a2
t .

Hence g is differentiable on R and

g′(t) =
a

1 + a2
.

(c) We have x′(0) = 1 and y′(0) = a. Hence by the results in part (a)

fx(0, 0)x′(0) + fy(0, 0)y′(0) = 0 · 1 + 0 · a = 0.

This differs from g′(0) for a 6= 0. The chain hence does not apply for a 6= 0. We
conclude that f is not differentiable at (0, 0).

2. (a) The arc length is defined as

s(t) =

∫ t

0

|r′(τ)| dτ .

We have r′(t) = et(cos t− sin t) i + et(sin t+ cos t) j + et k, and hence

|r′(t)| = et
√

(cos t− sin t)2 + (sin t+ cos t)2 + 1 = et
√

2 cos2 t+ 2 sin2 t+ 1 = et
√

3.

Hence

s(t) =

∫ t

0

eτ
√

3 dτ = (et − 1)
√

3.

Solving for t gives
t(s) = ln(

√
3 s+ 1).

So the parametrization of C by arc length is given by

r̃(s) = r(t(s)) = et(s) cos t(s) i + et(s) sin t(s) j + et(s) k

= (
√

3 s+ 1)(cos ln(
√

3 s+ 1) i + sin ln(
√

3 s+ 1) j + k)

where 0 ≤ s ≤ (e2π − 1)
√

3.
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(b) The curvature κ is defined as

κ =

∣∣∣∣dTds
∣∣∣∣ ,

where T is the unit tangent vector. By the chain rule

κ =
1

|r′(t)|

∣∣∣∣dTdt
∣∣∣∣ ,

From part (a) we get

T =
1

|r′(t)|
r′(t) =

1√
3

(
(cos t− sin t) i + (sin t+ cos t) j + k

)
which gives

dT

dt
=

1√
3

(
(− sin t− cos t) i + (cos t− sin t) j

)
and hence by a similar computation as in part (a)∣∣∣∣dTdt

∣∣∣∣ =

∣∣∣∣ 1√
3

(
(− sin t− cos t) i + (cos t− sin t) j

)∣∣∣∣ =

√
2√
3
.

The curvature of C at r(t) is thus

κ =
1

et
√

3
·
√

2√
3

=

√
2

3
e−t.

3. (a) First method: The ’upper’ half of the ellipsoid can be considered to be the graph
of the function

f(x, y) =
√

6− (3x2 + 2y2).

We can thus compute tangent plane of the ellipsoid at (x, y, z) = (1, 1, 1) from
the linearization of f at (x, y) = (1, 1) which is given by

L(x, y) = f(1, 1) + fx(1, 1)(x− 1) + fy(1, 1)(y − 1).

Using fx(x, y) = −3x/
√

6− 3x2 − 2y2 and fy(x, y) = −2y/
√

6− 3x2 − 2y2 and
hence fx(1, 1) = −3 and fy(1, 1) = −2 we find for the tangent plane

z = L(x, y) = 1− 3(x− 1)− 2(y − 1) = 6− 3x− 2y.

Second method: We can view the ellipsoid to be given by a level set of the
function

F (x, y, z) = 3x2 + 2y2 + z2,

and we can hence write the tangent plane as

∇F (1, 1, 1) · (x− 1, y − 1, z − 1) = 0.

We have ∇F (x, y, z) = (6x, 4y, 2z) and hence ∇F (1, 1, 1) = (6, 4, 2). For the
tangent plane we thus find

(6, 4, 2) · (x− 1, y − 1, z − 1) = 0,

or equivalently,
z = 6− 3x− 2y

which agrees with the result obtained from the first method.
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(b) Let
g(x, y, z) = x2 + y2 + z2

which gives the square distance of (x, y, z) to the origin. To find the largest sphere
fitting inside of the ellipsoid we study the extrema of g under the constraint
F (x, y, z) = 3x2 +2y2 +z2 = 6. By the method of Langrange multipliers there is
a λ ∈ R such that ∇g = λ∇F at the extremum. This yields the set of equations

gx = λFx,
gy = λFy,
gz = λFz,

F (x, y, z) = 6,

i.e.
2x = λ6x,
2y = λ4y,
2z = λ2z,

3x2 + 2y2 + z2 = 6,

which is equivalent to
x = 0 ∪ λ = 1

3
,

y = 0 ∪ λ = 1
2
,

z = 0 ∪ λ = 1,
3x2 + 2y2 + z2 = 6.

This in turn is equivalent to

x = y = 0 ∩ λ = 1 or x = z = 0 ∩ λ = 1
2

or y = z = 0 ∩ λ = 1
3
,

3x2 + 2y2 + z2 = 6

or
x = y = 0, z = ±

√
6, λ = 1 or

x = z = 0, y = ±
√

3, λ = 1
2

or

y = z = 0, x = ±
√

2, λ = 1
3
.

We have g(0, 0,±
√

6) = 6, g(0,±
√

3, 0) = 3 and g(±
√

2, 0) = 2. The greatest
sphere that fits inside of the ellipsoid has radius where g has a minimum on the
ellipsoid, i.e. the sphere has radius

√
2 which agrees with the smallest semi axis

of the ellipsoid.

4. (a) Since F is defined on a simply connected domain it is sufficient to show that
∇× F = 0 in order to prove that F is conservative.

∇× F =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
x2 cos y sin z sin y cos z

∣∣∣∣∣∣
=
(∂ sin y cos z

∂y
− ∂ cos y sin z

∂z

)
i−
(∂ sin y cos z

∂x
− ∂x2

∂z

)
j +
(∂ cos y sin z

∂x
− ∂x2

∂y

)
k

= (cos y cos z − cos y cos z) i− 0 j + 0k = 0.
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Let f be a potential function for F, i.e.

∂f

∂x
= x2 (*),

∂f

∂y
= cos y sin z (**),

∂f

∂z
= sin y cos z (***).

Integrating both sides of (*) with respect to x gives

f(x, y, z) =
1

3
x3 + g(y, z),

where g(y, z) is an integration constant. Combining this with (**) gives

∂f

∂y
= cos y sin z =

∂g

∂y
.

Integrating both hand sides of the latter equation with respect to y gives

g(y, z) = sin y sin z + h(z),

where h(z) is an integration constant. Combining with (***) gives

∂f

∂z
= sin y cos z = sin y cos z + h′(z).

Integrating both hand sides of the latter equation with respect to z gives

h(z) = c,

where c ∈ R is an integration constant. Thus

f(x, y, z) =
1

3
x3 + sin y sin z + c.

One easily checks that indeed ∇f = F.

(b) Using that F is conservative and that f is a potential function for F we get by
the fundamental theorem of line integrals∫ 1

0

F(r(t)) · r′(t) dt = f(r(1))− f(r(0)).

Using r(1) = 2 i + e j + e2 k and r(0) = 1 i + 1 j + 1k we get∫ 1

0

F(r(t)) · r′(t) dt =
1

3
23 + sin e sin e2− 1

3
− sin 1 sin 1 =

7

3
+ sin e sin e2− sin2 1.

5. For the present case, Stokes’ Theorem should yield∫∫
D

∇× F · dS =

∫
∂D

F · dr,

where D is the part of the paraboloid z = 5−x2− y2 which has z ≥ 1 and ∂D is the
boundary of D. As we need to compute the upward flux we choose an orientation
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on D which is given by a vector pointing upward, and the boundary ∂D is oriented
consistently.

We start by computing the right hand side of Stokes’ Theorem. We note that the
boundary of D is given by

∂D = {(x, y, z) ∈ R3 : z = 1, x2 + y2 = 4},

i.e. ∂D is a circle of radius 2 in the plane z = 1 centered at the z-axis. We parametrize
this curve using

r(t) = 2 cos t i + 2 sin t j + k

with t ∈ [0, 2π]. The orientation of ∂D induced by the parametrization r is such that
∂D is traversed in the counterclockwise direction when looking at ∂D from above.
We then have∫
∂D

F · dr =

∫ 2π

0

F(r(t)) · r′(t) dt =

∫ 2π

0

(−4 sin t, 2 sin t, 6 cos t) · (−2 sin t, 2 cos t, 0) dt

=

∫ 2π

0

8 sin2 t+ 4 sin t cos t dt = 4t− 4 cos t sin t− 2 cos2 t
∣∣t=2π

t=0
= 8π.

For the left hand side of Stokes’ Theorem, we first compute

∇× F =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
−2yz y 3x

∣∣∣∣∣∣ = −(3 + 2y) j + 2z k.

For the parametrization ofD, we choose r : (x, y) 7→ (x, y, 5−x2−y2) with x2+y2 ≤ 4.
Then ∂r/∂x = (1, 0,−2x), ∂r/∂y = (0, 1,−2y), and

∂r

∂x
× ∂r

∂y
= (2x, 2y, 1).

As this vector is pointing upward (since it has has a positive z-component) it gives
the desired orientation of D. Let D̃ be the disk of radius 2 in the (x, y)-plane, i.e.
D̃{(x, y) ∈ R2 : x2 + y2 ≤ 4}. Then∫∫

D

∇× F · dS =

∫∫
D̃

∇× F(r(x, y)) ·
(∂r
∂x
× ∂r

∂y

)
dxdy

=

∫∫
D̃

(−(3 + 2y) j + 2z k) · (2x i + 2y j + k) dxdy

=

∫∫
(−6y − 4y2 + 10− 2x2) dxdy.

Substituting polar coordinates x = r cos θ, y = r sin θ this integral becomes∫ 2π

0

∫ 2

0

(−6r cos θ − 6r2 cos2 θ + 10− 2r2 sin2 θ)r drdθ

=

∫ 2π

0

−2r3 cos θ − 3

2
r4 cos2 θ + 5r2 − 1

2
r4 sin2 θ

∣∣∣∣r=2

r=0

dθ

=

∫ 2π

0

(−16 cos θ − 24 cos2 θ + 20− 8 sin2 θ) dθ

= −16 sin θ − 12 cos θ sin θ − 12θ + 20θ + 4 cos θ sin θ − 4θ|θ=2π
θ=0

=8π
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which agrees with the result above.

6. Since the equation relates a volume integral to a surface integral of a vector field
the statement is reminiscent of Gauß’ Theorem. To show that the statement indeed
follows from Gauß’ Theorem we need to show that the divergence of the vector field
in the surface integral is equal to the integrand of the volume integrals, i.e.

∇ · 1

r2
r =

∂

∂x

x

r2
+

∂

∂y

y

r2
+

∂

∂z

z

r2
=

1

r2
.

We have
∂

∂x

x

r2
=

∂

∂x

x

x2 + y2 + z2
=

y2 + z2 − x2

(x2 + y2 + z2)2
,

where we used the quotient rule in the last equality. Similarly

∂

∂y

y

r2
=

x2 + z2 − y2

(x2 + y2 + z2)2
,

and
∂

∂z

z

r2
=

x2 + y2 − z2

(x2 + y2 + z2)2
,

Summing up these terms gives the desired result.
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